

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

CBC Isolate

mple ID: SA-240412-3826 Itch: 23FEB2024-CBC pe: Finished Product - Inh atrix: Concentrate - Isolate it Mass (g):	nalable	Received: 03/08, Completed: 03/2		Client Skyhio	
			Summary		
			Test	Date Tested	Status
	$\langle - \rangle$		Cannabinoids	03/20/2024	Tested
	and the second second		Heavy Metals	03/15/2024	Tested
	and an and a second second		Microbials	03/14/2024	Tested
			Mycotoxins	03/18/2024	Tested
			Pesticides	03/18/2024	Tested
	23FEB2024-		Residual Solvents	03/19/2024	Tested
ND	90.9 %	93.8 %	Not Tested	Not Tested	Yes
Total ∆9-THC	СВС	otal Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
тоtal Д9-ТНС annabinoids by halyte	HPLC-PDA and	I GC-MS/MS	_0Q	Result	Normalization
annabinoids by _{halyte}	HPLC-PDA and LOD (%)	I GC-MS/MS	_0Q (%)	Result (%)	Result (mg/g)
annabinoids by nalyte 3C	HPLC-PDA and LOD (%) 0.0095	I GC-MS/MS	.0Q (%) .0284	Result (%) 90.9	Result (mg/g) 909
annabinoids by _{halyte}	HPLC-PDA and LOD (%)	I GC-MS/MS	_0Q (%)	Result (%)	Result (mg/g)
annabinoids by nalyte BC BCA	HPLC-PDA and LOD (%) 0.0095 0.0181	I GC-MS/MS	.0Q (%) .0284 .0543	Result (%) 90.9 ND	Result (mg/g) 909 ND
annabinoids by halyte BC BCA BCV BD	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006	I GC-MS/MS	.0Q (%) .0284 .0543 0.018	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND
annabinoids by halyte BC BCA BCV	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081	I GC-MS/MS	.0Q (%) .0284 .0543 0.018 .0242	Result (%) 90.9 ND ND ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND
annabinoids by halyte BC BCA BC BD BDA BDV	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 D.013	Result (%) 90.9 ND ND ND ND ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BC BD BDA	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061	I GC-MS/MS	.0Q (%) .0284 .0543 0.018 .0242 0.013 .0182	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BC BCA BCA BDA BDA BDA BDV BDVA BCA BCA	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049	I GC-MS/MS	.0Q (%) .0284 .0543 .018 .0242 .013 .0182 .0063 .0172 .0147	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte 3C 3CA 3CV 3DA 3DA 3DV 3DV 3DV 3DV 3C 3GA 3L	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.012	I GC-MS/MS	.0Q (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BC BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BLA	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124	I GC-MS/MS	.OQ (%) .0284 .0543 .018 .0242 .013 .0182 .0063 .0172 .0147 .0335 .0371	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0124 0.0124 0.0056	I GC-MS/MS	.0Q (%) .0284 .0543 0.018 .0242 0.013 .0182 .0063 .0172 .0147 .0335 .0371 .0169	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006	I GC-MS/MS	.OQ (%) .0284 .0543 .018 .0242 .013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .00181	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0021 0.0021 0.0057 0.0049 0.012 0.0124 0.0056 0.006 0.006 0.006 0.008	I GC-MS/MS	.0Q (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0335 .0371 .0169 .00181 .0.054	Result (%) 90.9 ND ND	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte 3C 3CA 3CV 3DA 3DA 3DV 3DA 3DV 3DA 3DV 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0021 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.006 0.018 0.0104	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0335 .0371 .0169 .00181 .0.054 .0.054	Result (%) 90.9 ND ND <t< td=""><td>Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND</td></t<>	Normalization Result (mg/g) 909 ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids by halyte BC BCA BC BCA BC BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0021 0.0021 0.0057 0.0049 0.0124 0.0056 0.006 0.018 0.0056 0.006 0.018 0.0056 0.006 0.018 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0057 0.0120 0.012 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0124 0.0056 0.0181 0.0057 0.0120 0.0124 0.0056 0.0181 0.0057 0.0120 0.0124 0.0056 0.0181 0.0057 0.0120 0.0124 0.0056 0.0181 0.0057 0.0120 0.0124 0.0056 0.0068 0.0067 0.0120 0.0124 0.0056 0.0068 0.0068 0.0067 0.0124 0.0056 0.0068 0.0068 0.0067 0.0124 0.0056 0.0068 0.0068 0.0067 0.0067 0.0074 0.0056 0.0068 0.0068 0.0068 0.0074 0.0056 0.0068 0.0078 0.007	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .00181 .0.054 .0.054 .0.054 .0.0312 .0.027	Result (%) 90.9 ND ND <t< td=""><td>Normalization Result (mg/g) 909 ND ND</td></t<>	Normalization Result (mg/g) 909 ND
annabinoids by halyte 3C 3CA 3CV 3DA 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0021 0.0021 0.0057 0.0049 0.0124 0.0056 0.006 0.018 0.0124 0.0056 0.006 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0057 0.0124 0.0056 0.018 0.0057 0.0056 0.0057 0.0056 0.0	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .00181 .0.054 .0.054 .0.054 .0.054 .0.054 .0.054	Result (%) 90.9 ND ND <t< td=""><td>Normalization Result (mg/g) 909 ND ND</td></t<>	Normalization Result (mg/g) 909 ND
annabinoids by halyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	HPLC-PDA anc LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006 0.018 0.0104 0.0104 0.0076 0.0084 0.0084	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .00181 .0.054 .0.054 .0.054 .0.054 .0.051 .0.0251 .0.206	Result (%) 90.9 ND ND ND	Normalization Result (mg/g) 909 ND
annabinoids by halyte 3C 3CA 3CV 3DA 3DA 3DV 3DV 3DV 3DV 3DV 3DV 3DA 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A	HPLC-PDA and LOD (%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0021 0.0021 0.0057 0.0049 0.0124 0.0056 0.006 0.018 0.0124 0.0056 0.006 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0124 0.0056 0.018 0.0057 0.0124 0.0056 0.018 0.0057 0.0056 0.0057 0.0056 0.0	I GC-MS/MS	.OQ (%) .0284 .0543 .0018 .0242 .0013 .0182 .0063 .0172 .0147 .0335 .0371 .0169 .00181 .0.054 .0.054 .0.054 .0.054 .0.054 .0.054	Result (%) 90.9 ND ND <t< td=""><td>Normalization Result (mg/g) 909 ND ND</td></t<>	Normalization Result (mg/g) 909 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tested By: Nicholas Howard

sted By: Nicholas Howard Scientist Date: 03/20/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

CBC Isolate

Sample ID: SA-240412 Batch: 23FEB2024-CE Type: Finished Produc Matrix: Concentrate - Jnit Mass (g):	3C ct - Inhalable	Received: 03/08/2024 Completed: 03/20/2024	Client Skyhio	
Heavy Metals				
Heavy Metals Analyte	by ICP-MS	LOQ (ppm)	Result (ppm)	
		LOQ (ppm) 0.02	Result (ppm) ND	
Analyte	LOD (ppm)			
Analyte Arsenic	LOD (ppm) 0.002	0.02	ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tested By: Annie Velazquez Laboratory Technician Date: 03/15/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

CBC Isolate

Sample ID: SA-240412-38263 Batch: 23FEB2024-CBC Type: Finished Product - Inhalable Matrix: Concentrate - Isolate Unit Mass (g):

Received: 03/08/2024 Completed: 03/20/2024

Client Skyhio

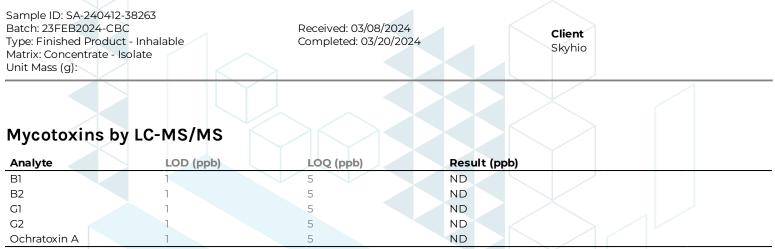
Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	ND	Methomyl	30	100	ND
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Cypermethrin	30	100	ND	Prallethrin	30	100	ND
Daminozide	30	100	ND	Propiconazole	30	100	ND
Diazinon	30	100	ND	Propoxur	30	100	ND
Dichlorvos	30	100	ND	Pyrethrins	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30 <	100	ND	Spinosad	30	100	ND
Etofenprox	30	100	ND	Spiromesifen	30	100	ND
Etoxazole	30	100	ND	Spirotetramat	30	100	ND
Fenhexamid	30	100	ND	Spiroxamine	30	100	ND
Fenoxycarb	30	100	ND	Tebuconazole	30	100	ND
Fenpyroximate	30 <	100	ND	Thiacloprid	30	100	ND
Fipronil	30	100	ND	Thiamethoxam	30	100	ND
Flonicamid	30	100	ND	Trifloxystrobin	30	100	ND
Fludioxonil	30	100	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tested By: Anthony Mattingly Scientist



Date: 04/12/2024 Date: 03/18/2024 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

CBC Isolate

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

REd

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tested By: Anthony Mattingly Scientist

Date: 04/12/2024 Date: 03/18/2024 Date: 03/18/2024 Date: 03/18/2024 Date: 03/18/2024 Date: 03/18/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

CBC Isolate

Sample ID: SA-240412-38263 Batch: 23FEB2024-CBC Type: Finished Product - Inhalable Matrix: Concentrate - Isolate Unit Mass (g):		d: 03/08/2024 ted: 03/20/2024	Client Skyhio	
	ating	Result (CFU/g)	Result (Qualitative)	
		Result (CFU/g)	Result (Qualitative)	
Analyte			Result (Qualitative)	
Analyte Total aerobic count	LOD (CFU/g) 10	ND	Result (Qualitative)	
Total coliforms	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tack Rineston

Tested By: Jade Pinkston Microbiology Technician Date: 03/14/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

CBC Isolate

Sample ID: SA-240412-38263 Batch: 23FEB2024-CBC Type: Finished Product - Inhalable Matrix: Concentrate - Isolate Unit Mass (g):

Received: 03/08/2024 Completed: 03/20/2024

Client Skyhio

Residual Solvents by HS-GC-MS

	3						
Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane		29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/12/2024

Tested By: Kelsey Rogers Scientist Date: 03/19/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

CBC Isolate

Sample ID: SA-240412-38263 Batch: 23FEB2024-CBC Type: Finished Product - Inhalable Matrix: Concentrate - Isolate Unit Mass (g):

Received: 03/08/2024 Completed: 03/20/2024

Client Skyhio

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppn	n) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Pesticides - CADC	c i i i i		
Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acequinocyl	4000	Imidacloprid	3000
Acetamiprid	5000	Kresoxim methyl	1000
Aldicarb	30	Malathion	5000
Azoxystrobin	40000	Metalaxyl	15000
Bifenazate	5000	Methiocarb	30
Bifenthrin	500	Methomyl	100
Boscalid	10000	Mevinphos	30
Carbaryl	500	Myclobutanil	9000
Carbofuran	30	Naled	500
Chloranthraniliprole	40000	Oxamyl	200
Chlorfenapyr	30	Paclobutrazol	30
Chlorpyrifos	30	Permethrin	20000
Clofentezine	500	Phosmet	200
Coumaphos	30	Piperonyl Butoxide	8000
Cypermethrin	1000	Prallethrin	400
Daminozide	30	Propiconazole	20000
Diazinon	200	Propoxur	30
Dichlorvos	30	Pyrethrins	1000
Dimethoate	30	Pyridaben	3000
Dimethomorph	20000	Spinetoram	3000
Ethoprophos	30	Spinosad	3000
Etofenprox	30	Spiromesifen	12000
Etoxazole	1500	Spirotetramat	13000
Fenhexamid	10000	Spiroxamine	30
Fenoxycarb	30	Tebuconazole	2000
Fenpyroximate	2000	Thiacloprid	30
Fipronil	30	Thiamethoxam	4500
Flonicamid Fludioxonil	2000 30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppl	b) Analyte	Limit (ppb)
BI	5	B2	5
GI	5	G2	5
Ochratoxin A	5		

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.