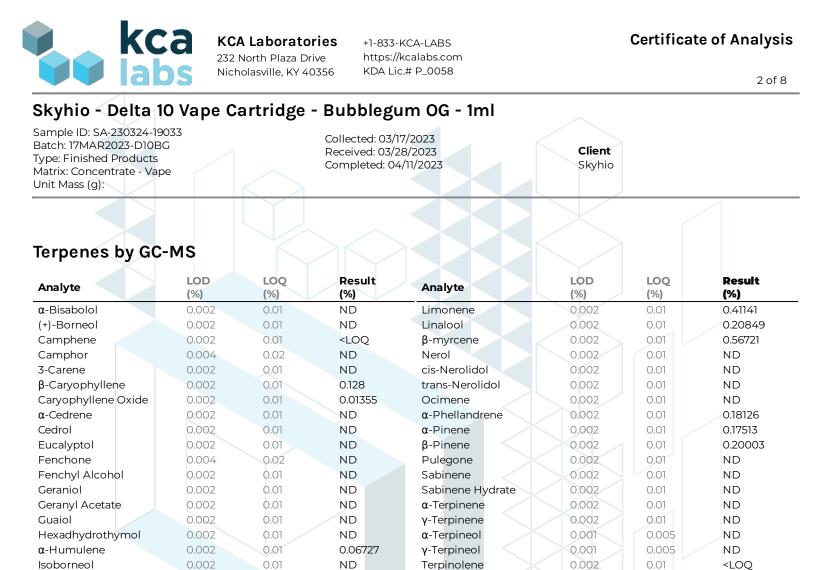


ample ID: SA-230324-19 atch: 17MAR2023-D10B ype: Finished Products latrix: Concentrate - Vap nit Mass (g):	G	Collected: 03/17/ Received: 03/28/ Completed: 04/1	2023	Client Skyhio	
			Summary		
			Test	Date Tested	Status
			Cannabinoids	04/03/2023	Tested
	-		Heavy Metals	04/07/2023	Tested
			Microbials	04/07/2023	Tested
	100		Mycotoxins	04/06/2023	Tested
			Pesticides	04/06/2023	Tested
7			Residual Solvents		Tested
	17MAR2023- D10BG		Terpenes	04/04/2023	Tested
ND Total Δ9-THC	63.1 % Δ8-ТНС	91.4 %	Not Tested	Not Tested	Yes
		Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization
annabinoids k	oy HPLC-PDA, I	LC-MS/MS, and,	or GC-MS/MS	Result	Normalization
annabinoids k _{nalyte}	oy HPLC-PDA, I	LC-MS/MS, and LOD (%)	or GC-MS/MS دمم (%)	Result (%)	Result (mg/g)
annabinoids k ^{alyte}	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095	/or GC-MS/MS LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND
annabinoids k alyte c cv	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006	Vor GC-MS/MS Log (%) 0.0284 0.018	Result (%) ND ND	Result (mg/g) ND ND
annabinoids k alyte c cv D	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095	/or GC-MS/MS LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND
annabinoids k alyte c cv D D	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242	Result (%) ND ND 0.433	Normalization Result (mg/g) ND ND 4.33
annabinoids k alyte c cv b dv g	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0061	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182	Result (%) ND ND 0.433 ND	Normalization Result (mg/g) ND ND 4.33 ND
annabinoids k alyte c cv b D D U c	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0061 0.0057	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0182 0.0172	Result (%) ND ND 0.433 ND ND ND	Normalization Result (mg/g) ND ND 4.33 ND ND ND
annabinoids k alyte c c c c c c c c c c c c c c c c c c c	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0061 0.0057 0.012	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335	Result (%) ND ND 0.433 ND ND ND ND ND	Normalization Result (mg/g) ND ND 4.33 ND 4.33 ND ND ND ND ND
annabinoids k alyte c cv b dv g L N T	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0061 0.0057 0.012 0.0056	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169	Result (%) ND ND 0.433 ND ND ND ND 0.157	Normalization Result (mg/g) ND ND 4.33 ND ND ND ND ND ND ND 1.57
annabinoids k alyte c c c c v D D D v c c c c v D D v c c c c	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0067 0.018 0.0067 0.0104	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.054 0.02 0.0312	Result (%) ND ND 0.433 ND ND ND 0.157 ND 18.6 63.1	Normalization Result (mg/g) ND ND 4.33 ND 4.33 ND ND ND 1.57 ND 1.57 ND 186 631
annabinoids k aalyte ac ac bc bc bc bc bc bc bc bc bc bc bc bc bc	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.054 0.02 0.054 0.02 0.0312 0.0227	Result (%) ND ND 0.433 ND ND ND 0.157 ND 18.6 63.1 ND	Normalization Result (mg/g) ND ND 4.33 ND ND ND 1.57 ND 186 631 ND
annabinoids k aalyte GC GCV GD BDV GG BL MN T a,10a-THC -THC -THC -THC -THCV	oy HPLC-PDA, I	LC-MS/MS, and (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.0227 0.0206	Result (%) ND ND 0.433 ND ND ND 0.157 ND 18.6 63.1 ND ND ND	Normalization Result (mg/g) ND ND 4.33 ND ND ND ND 1.57 ND 186 631 ND ND 186 631 ND ND ND ND ND ND ND ND ND ND
annabinoids k aalyte GC GCV BD BDV GG BL MN Ta,10a-THC -THC -THC -THC -THC -THCV aR,9R}A10-THC	oy HPLC-PDA, I	LC-MS/MS, and (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.0227 0.0206 0.02	Result (%) ND ND 0.433 ND ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25	Result (mg/g) ND ND 4.33 ND ND 1.57 ND 1.57 ND 186 631 ND ND ND 125
annabinoids k nalyte 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.0227 0.0206 0.02 0.02 0.02	Result (%) ND ND 0.433 ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25 1.23	Result (mg/g) ND ND 4.33 ND 4.33 ND 1.57 ND 1.57 ND 186 631 ND ND 123
annabinoids k nalyte 3C 3CV 3D 3DV 3G 3L 3N 3T 5a,10a-THC 3-THC	oy HPLC-PDA, I	LC-MS/MS, and (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067 0.0067 0.0067 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.027 0.0206 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0	Result (%) ND ND 0.433 ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25 1.23 2.16	Result (mg/g) ND ND 4.33 ND ND 1.57 ND 1.57 ND 186 631 ND 186 631 ND 123 21.6
annabinoids k nalyte 3C 3CV 3D 3DV 3G 3L 3N 3T 5a,10a-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-THC 3-S)-Δ10-THC 3-S)-Δ10-THC 3-Siso-THC 3-Siso-THC	oy HPLC-PDA, I	LC-MS/MS, and LOD (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.0227 0.0206 0.02 0.02 0.02	Result (%) ND ND 0.433 ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25 1.23 2.16 1.45	Result (mg/g) ND ND 4.33 ND ND 1.57 ND 1.57 ND 186 631 ND 186 631 ND 123 21.6 14.5
annabinoids k halyte BC BC BC BDV BDV BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BDV BDV BC BDV BDV BC BDV BDV BC BDV BDV BC BDV BC BDV BDV BC BDV BDV BC BDV BDV BC BDV BDV BC BDV BDV BC BDV BDV BDV BC BDV BDV BC BDV BDV BC BDV BC BDV BDV BC BDV BC BDV BC BDV BC BDV BC BDV BDV BC BDV BC BDV BC BDV BC BDV BC BDV BC BC BDV BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BDV BC BC BC BC BC BC BC BC BC BC BC BC BC	oy HPLC-PDA, I	LC-MS/MS, and (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067 0.0067 0.0067 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.027 0.0206 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0	Result (%) ND ND 0.433 ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25 1.23 2.16 1.45 ND	Result (mg/g) ND ND 4.33 ND ND 1.57 ND 1.57 ND 186 631 ND 186 631 ND 123 21.6 14.5 ND
	oy HPLC-PDA, I	LC-MS/MS, and (%) 0.0095 0.006 0.0081 0.0057 0.012 0.0056 0.018 0.0056 0.018 0.0056 0.018 0.0067 0.0104 0.0076 0.0069 0.0067 0.0067 0.0067 0.0067	Vor GC-MS/MS Loo (%) 0.0284 0.018 0.0242 0.0182 0.0172 0.0335 0.0169 0.054 0.02 0.0312 0.027 0.0206 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0	Result (%) ND ND 0.433 ND ND 0.157 ND 18.6 63.1 ND 18.6 63.1 ND ND 4.25 1.23 2.16 1.45	Result (mg/g) ND ND 4.33 ND 4.33 ND 1.57 ND 1.57 ND 186 631 ND 186 631 ND 123 21.6 14.5

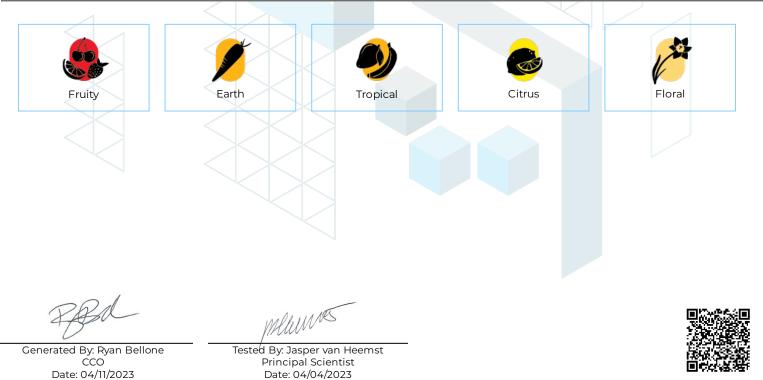
ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;


Generated By: Ryan Bellone CCO Date: 04/11/2023

Tested By: Scott Caudill Senior Scientist Date: 04/03/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no characteristic acceptance and the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

1 of 8


 Total Terpenes (%)

 ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

ND

0.002

Isopulegol

Valencene

0.002

ND

1.96

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Collected: 03/17/2023 Batch: 17MAR2023-D10BG Client Received: 03/28/2023 Type: Finished Products Completed: 04/11/2023 Skyhio Matrix: Concentrate - Vape Unit Mass (g): Heavy Metals by ICP-MS Analyte LOD (ppb) LOQ (ppb) Result (ppb) Arsenic 20 ND Cadmium 20 ND 2 20 Lead ND Mercury 12 50 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/11/2023

Tested By: Kelsey Rogers Scientist Date: 04/07/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Batch: 17MAR2023-D10BG Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Collected: 03/17/2023 Received: 03/28/2023 Completed: 04/11/2023

Client Skyhio

Pesticides by LC-MS/MS

	LOD		Result		LOD		Result
Analyte	(ppb)	LOQ (ppb)	(ppb)	Analyte	(ppb)	LOQ (ppb)	(ppb)
Acephate	30	100	ND	Hexythiazox	30	100	ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Aldicarb	30	100	ND	Imidacloprid	30	100	ND
Azoxystrobin	30	100	ND	Kresoxim methyl	30	100	ND
Bifenazate	30	100	ND	Malathion	30	100	ND
Boscalid	30	100	ND	Metalaxyl	30	100	ND
Carbaryl	30	100	ND	Methiocarb	30	100	ND
Carbofuran	30	100	ND	Methomyl	30	100	ND
Chloranthraniliprole	30	100	ND	Mevinphos	30	100	ND
Chlorfenapyr	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Naled	30	100	ND
Clofentezine	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Daminozide	30	100	ND	Permethrin	30	100	ND
Diazinon	30	100	ND	Phosmet	30	100	ND
Dichlorvos	30	100	ND	Piperonyl Butoxide	30	100	ND
Dimethoate	30	100	ND	Prallethrin	30	100	ND
Dimethomorph	30	100	ND	Propiconazole	30	100	ND
Ethoprophos	30	100	ND	Propoxur	30	100	ND
Etoxazole	30	100	ND	Pyrethrins	30	100	ND
Fenhexamid	30	100	ND	Pyridaben	30	100	ND
Fenoxycarb	30	100	ND	Spinetoram	30	100	ND
Fenpyroximate	30 <	100	ND	Spinosad	30	100	ND
Fipronil	30	100	ND	Spiromesifen	30	100	ND
Flonicamid	30	100	ND	Spirotetramat	30	100	ND
Fludioxonil	30	100	ND	Spiroxamine	30	100	ND
				Tebuconazole	30	100	ND
				Thiacloprid	30	100	ND
				Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/11/2023

Humes

Tested By: Jasper van Heemst Principal Scientist Date: 04/06/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories are provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Collected: 03/17/2023 Batch: 17MAR2023-D10BG Client Received: 03/28/2023 Type: Finished Products Completed: 04/11/2023 Skyhio Matrix: Concentrate - Vape Unit Mass (g): Mycotoxins by LC-MS/MS Analyte LOD (ppb) Result (ppb) LOQ (ppb) 5 B1 ND B2 5 ND 5 G1 ND 5 G2 ND Ochratoxin A 5 ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/11/2023

Humes

Tested By: Jasper van Heemst Principal Scientist Date: 04/06/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Collected: 03/17/2023 Batch: 17MAR2023-D10BG Client Received: 03/28/2023 Type: Finished Products Completed: 04/11/2023 Skyhio Matrix: Concentrate - Vape Unit Mass (g): **Microbials by PCR and Plating** Analyte LOD (CFU/g) Result (CFU/g) Total aerobic count ND Total coliforms ND Generic E. coli ND Salmonella spp. ND Shiga-toxin producing E. coli (STEC) ٦ ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/11/2023

Tested By: Lucy Jones Scientist

Date: 04/07/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Batch: 17MAR2023-D10BG Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Collected: 03/17/2023 Received: 03/28/2023 Completed: 04/11/2023

Client Skyhio

Residual Solvents by HS-GC-MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	(ppin) 167	500	ND	Ethylene Glycol	2]	62	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Cyclohexane	129	388	ND	Methanol	100	300	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylbutane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	Methylene Chloride	20	60	ND
N,N-Dimethylacetamide	37	109	ND	2-Methylpentane		29	ND
2,2-Dimethylbutane	10	29	ND	3-Methylpentane	10	29	ND
2,3-Dimethylbutane	10	29	ND	n-Pentane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Pentanol	167	500	ND
1,4-Dioxane	13	38	ND	n-Propane	167	500	ND
Ethanol	167	500	ND	1-Propanol	167	500	ND
2-Ethoxyethanol	6	16	ND	Pyridine	7	20	ND
Ethyl Acetate	167	500	ND	Tetrahydrofuran	24	72	ND
Ethyl Ether	167	500	ND	Toluene	30	89	ND
Ethylbenzene	3	7	ND	Tetramethylene Sulfone	6	16	ND
				Xylenes (o-, m-, and p-)	73	217	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/11/2023

Tested By: Scott Caudill Senior Scientist Date: 04/11/2023

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

8 of 8

Skyhio - Delta 10 Vape Cartridge - Bubblegum OG - 1ml

Sample ID: SA-230324-19033 Batch: 17MAR2023-D10BG Type: Finished Products Matrix: Concentrate - Vape Unit Mass (g):

Collected: 03/17/2023 Received: 03/28/2023 Completed: 04/11/2023

Client Skyhio

Reporting Limit Appendix

Heavy Metals - Colorado CDPHE

Analyte	Limit (ppb) Ana	lyte Limit (ppb)
Arsenic	1500 Lead	500
Cadmium	500 Merc	ury 1500
,		

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	100000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Glycol	620
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Cyclohexane	3880	Methanol	3000
1,2-Dimethoxyethane	100	2-Methylbutane	290
Dimethyl Sulfoxide	5000	Methylene Chloride	600
N,N-Dimethylacetamide	1090	2-Methylpentane	290
2,2-Dimethylbutane	290	3-Methylpentane	290
2,3-Dimethylbutane	290	n-Pentane	5000
N,N-Dimethylformamide	880	1-Pentanol	5000
1,4-Dioxane	380	n-Propane	5000
Ethanol	5000	1-Propanol	5000
2-Ethoxyethanol	160	Pyridine	200
Ethyl Acetate	5000	Tetrahydrofuran	720
Ethyl Ether	5000	Toluene	890
Ethylbenzene	70	Tetramethylene Sulfone	160

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acephate	5000	Hexythiazox	2000
Acetamiprid	5000	Imazalil	30
Aldicarb	30	Imidacloprid	3000
Azoxystrobin	40000	Kresoxim methyl	1000
Bifenazate	5000	Malathion	5000

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Boscalid	10000	Metalaxyl	15000
Carbaryl	500	Methiocarb	30
Carbofuran	30	Methomyl	100
Chloranthraniliprole	40000	Mevinphos	30
Chlorfenapyr	30	Myclobutanil	9000
Chlorpyrifos	30	Naled	500
Clofentezine	500	Oxamyl	200
Coumaphos	30	Paclobutrazol	30
Daminozide	30	Permethrin	20000
Diazinon	200	Phosmet	200
Dichlorvos	30	Piperonyl Butoxide	8000
Dimethoate	30	Prallethrin	400
Dimethomorph	20000	Propiconazole	20000
Ethoprophos	30	Propoxur	30
Etoxazole	1500	Pyrethrins	1000
Fenhexamid	10000	Pyridaben	3000
Fenoxycarb	30	Spinetoram	3000
Fenpyroximate	2000	Spinosad	3000
Fipronil	30	Spiromesifen	12000
Flonicamid	2000	Spirotetramat	13000
Fludioxonil	30000	Spiroxamine	30

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppm) Analyte	Limit (ppm)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.